Vector Algebra Question 94

Question: The image of the point with position vector $ \mathbf{i}+3\mathbf{k} $ in the plane $ \mathbf{r}.(\mathbf{i}+\mathbf{j}+\mathbf{k})=1 $ is

[J & K 2005]

Options:

A) $ \mathbf{i}+2\mathbf{j}+\mathbf{k} $

B) $ \mathbf{i}-2\mathbf{i}+\mathbf{k} $

C) $ -\mathbf{i}-2\mathbf{j}+\mathbf{k} $

D) $ \mathbf{i}+2\mathbf{j}-\mathbf{k} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Let Q be the image of the point $ P(\mathbf{i}+3\mathbf{k}) $ in the plane $ \mathbf{r}.(\mathbf{i}+\mathbf{j}+\mathbf{k})=1 $ . Then PQ is normal to the plane. Since PQ passes through P and in normal to the given plane, therefore equation of PQ is $ \mathbf{r}=(\mathbf{i}+3\mathbf{k})+\lambda (\mathbf{i}+\mathbf{j}+\mathbf{k}) $
    Since, Q lies on the line PQ, so, let the position vector of Q be $ (\mathbf{i}+3\mathbf{k})+\lambda (\mathbf{i}+\mathbf{j}+\mathbf{k}) $
    Þ $ (1+\lambda )\mathbf{i}+\lambda \mathbf{j}+(3+\lambda )\mathbf{k} $ . Since R is the mid point of PQ, therefore position vector of R is $ \frac{(1+\lambda )\mathbf{i}+\lambda \mathbf{j}+(3+\lambda )\mathbf{k}+\mathbf{i}+3\mathbf{k}}{2} $ or $ ( \frac{\lambda +2}{2} )\ \mathbf{i}+( \frac{\lambda }{2} )\ \mathbf{j}+( \frac{6+\lambda }{2} )\ \mathbf{k} $ or $ ( \frac{\lambda }{2}+1 )\ \mathbf{i}+( \frac{\lambda }{2} )\ \mathbf{j}+( 3+\frac{\lambda }{2} )\ \mathbf{k} $ Since R lies on the plane $ \mathbf{r}.(\mathbf{i}+\mathbf{j}+\mathbf{k})=1 $ Therefore, $ [ ( \frac{\lambda }{2}+1 )\ \mathbf{i}+( \frac{\lambda }{2} )\ \mathbf{j}+( 3+\frac{\lambda }{2} )\ \mathbf{k} ]\ .\ [ \mathbf{i}+\mathbf{j}+\mathbf{k} ]=1 $ $ [ \frac{\lambda }{2}+1+\frac{\lambda }{2}+3+\frac{\lambda }{2} ]=1 $
    Þ $ \lambda =-2 $ So, the position vector of Q is $ (\mathbf{i}+3\mathbf{k})-2(\mathbf{i}+\mathbf{j}+\mathbf{k})=-\mathbf{i}-2\mathbf{j}+\mathbf{k} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें