Vector Algebra Question 99

Question: If ABCD is a parallelogram, $ \overrightarrow{AB}=2,\mathbf{i}+4,\mathbf{j}-5,\mathbf{k} $ and $ \overrightarrow{AD}=,\mathbf{i}+2,\mathbf{j}+3,\mathbf{k}, $ then the unit vector in the direction of BD is

[Roorkee 1976]

Options:

A) $ \frac{1}{\sqrt{69}},(\mathbf{i}+2\mathbf{j}-8\mathbf{k}) $

B) $ \frac{1}{69},(\mathbf{i}+2\mathbf{j}-8,\mathbf{k}) $

C) $ \frac{1}{\sqrt{69}},(-\mathbf{i}-2\mathbf{j}+8\mathbf{k}) $

D) $ \frac{1}{69},(-\mathbf{i}-2\mathbf{j}+8,\mathbf{k}) $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Since $ \overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AD}\Rightarrow \overrightarrow{BD}=\overrightarrow{AD}-\overrightarrow{AB} $ $ =(\mathbf{i}+2\mathbf{j}+3\mathbf{k})-(2\mathbf{i}+4\mathbf{j}-5\mathbf{k})=-\mathbf{i}-2\mathbf{j}+8\mathbf{k} $ Hence unit vector in the direction of $ \overrightarrow{BD} $ is $ \frac{-\mathbf{i}-2\mathbf{j}+8\mathbf{k}}{|-\mathbf{i}-2\mathbf{j}+8\mathbf{k}|}=\frac{-\mathbf{i}-2\mathbf{j}+8\mathbf{k}}{\sqrt{69}}. $