Atoms And Nuclei Question 286

Question: In a Rutherford experiment, the number of particles scattered at $ 90{}^\circ $ angle are 28 per minute then number of scattered particles at an angle $ ~60{}^\circ $ and $ 120{}^\circ $ will be

Options:

A) 117 per minute, 25 per minute

B) 50 per minute, 12.5 per minute

C) 100 per minute, 200 per minute

D) 112 per minute, 12.4 per minute

Show Answer

Answer:

Correct Answer: D

Solution:

  • No. of particles scattered through an angle

$ \theta =N( \theta )=\frac{kZ^{2}}{{{\sin }^{4}}( \frac{\theta }{2} ){{( K.E. )}^{2}}} $

$ \therefore 28=\frac{4kcz^{2}}{{{( K.E. )}^{2}}}\text{ for }\theta \text{=90}{}^\circ $

$ \therefore \frac{kcz^{2}}{{{( K.E. )}^{2}}}\text{ =}\frac{28}{4}=7 $

$ \therefore N( 60{}^\circ )=\frac{7}{{{\sin }^{4}}( \frac{60{}^\circ }{2} )}=16\times 7=112/\min . $ $ N( 120{}^\circ )=\frac{7}{\sin ( \frac{120{}^\circ }{2} )}=12.4/\min $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें