Atoms And Nuclei Question 299

Question: The ionization energy of a hydrogen-like Bohr atom is 4 Rydbergs. Find the wavelength of radiation emitted when the electron jumps from the first excited state to the ground state: [1 Rydberg $ =2.2\times {{10}^{-18}},h=6.6\times {{10}^{-34}}Js, $ $ c=3\times 10^{8}m/s $ . Bohr radius of hydrogen atom $ =5\times {{10}^{-11}}m $

Options:

A) $ 400\overset{o}{\mathop{A}}, $

B) $ 300\overset{o}{\mathop{A}}, $

C) $ 500\overset{o}{\mathop{A}}, $

D) $ 600\overset{o}{\mathop{A}}, $

Show Answer

Answer:

Correct Answer: B

Solution:

  • The energy in the ground state $ E_{1}=-,4Rydberg\text{ }E_{1}=-,4\times 2.2\times {{10}^{-18}}J $ The energy of the first excited state (n=2) $ E_{2}=\frac{E_{1}}{4}=2.2\times {{10}^{-18}}J $ The energy difference $ \Delta E=E_{2}-E_{1}=3\times 2.2\times {{10}^{-18}}J $ Now, the wavelength of radiation emitted is $ \lambda =\frac{hc}{\Delta E} $ $ \lambda =\frac{6.6\times {{10}^{-34}}\times 3\times 10^{8}}{3\times 2.2\times {{10}^{-18}}}=300\overset{o}{\mathop{A}}, $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें