Atoms And Nuclei Question 302

Question: If potential energy between a proton and an electron is given by $ |U|=ke^{2}/2R^{3} $ , where K is the charge of electron and R is the radius of atom, then radius of Bohr’s orbit is given by (h = Planck’s constant, k=constant)

Options:

A) $ \frac{ke^{2}m}{h^{2}} $

B) $ \frac{6{{\pi }^{2}}}{n^{2}}\frac{ke^{2}m}{h^{2}} $

C) $ \frac{2\pi }{n}\frac{ke^{2}m}{h^{2}} $

D) $ \frac{4{{\pi }^{2}}ke^{2}m}{n^{2}h^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ U=-\frac{ke^{2}}{2R^{2}},F=-\frac{dU}{dR}=\frac{3ke^{2}}{2R^{4}} $ But, $ F=\frac{mv^{2}}{R}\Rightarrow \frac{mv^{2}}{R}=\frac{3ke^{2}}{2R^{4}} $ Also, $ mvR=\frac{nh}{2\pi } $ Solve to get: $ R=\frac{6{{\pi }^{2}}ke^{2}m}{n^{2}h^{2}} $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें