Atoms And Nuclei Question 270

Question: The acceleration of an electron in the first orbit of the hydrogen atom (z=1) is:

Options:

A) $ \frac{h^{2}}{{{\pi }^{2}}m^{2}r^{3}} $

B) $ \frac{h^{2}}{8{{\pi }^{2}}m^{2}r^{3}} $

C) $ \frac{h^{2}}{4{{\pi }^{2}}m^{2}r^{3}} $

D) $ \frac{h^{2}}{4\pi m^{2}r^{3}} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Speed of electron in first orbit (n=1) of hydrogen atom (z=1), $ v=\frac{e^{2}}{2{\varepsilon_{0}}h} $ $ r=\frac{h^{2}{\varepsilon_{0}}}{\pi me^{2}}\Rightarrow {\varepsilon_{0}}=\frac{r\pi me^{2}}{h^{2}} $
    Acceleration of electron,

    $ \frac{v^{2}}{r}=\frac{e^{4}}{4\varepsilon_0^{2}h^{2}}\times \frac{\pi me^{2}}{h^{2}{\varepsilon_{0}}} $

    $ \frac{e^{4}\times \pi me^{2}}{4h^{4}\varepsilon _{0}^{3}} $

    Eliminating $ {\varepsilon_{0}} $ $ =\frac{e^{4}\pi me^{2}h^{6}}{4h^{4}r^{3}{{\pi }^{3}}m^{3}e^{6}}=\frac{h^{2}}{4{{\pi }^{2}}m^{2}r^{3}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें