Atoms And Nuclei Question 272

Question: In the Bohr’s model of hydrogen-like atom the force between the nucleus and the electron is modified as $ F=\frac{e^{2}}{4\pi {\varepsilon_{0}}}( \frac{1}{r^{2}}+\frac{\beta }{r^{3}} ), $ where $ \beta $ is a constant. For this atom, the radius of the nth orbit in terms of the Bohr radius $ ( a_{0}=\frac{{\varepsilon_{0}}h^{2}}{m\pi e^{2}} ) $ is:

Options:

A) $ r_{n}=a_{0}n-\beta $

B) $ r_{n}=a_{0}n^{2}+\beta $

C) $ r_{n}=a_{0}n^{2}-\beta $

D) $ r_{n}=a_{0}n+\beta $

Show Answer

Answer:

Correct Answer: C

Solution:

  • As $ F=\frac{mv^{2}}{r}=\frac{e^{2}}{4\pi {\varepsilon_{0}}}( \frac{1}{r^{2}}+\frac{\beta }{r^{3}} ) $ $ \text{and }mvr=\frac{nh}{2\pi }\Rightarrow v=\frac{nh}{2\pi mr} $
    $ \therefore m{{( \frac{nh}{2\pi mr} )}^{2}}\times \frac{1}{r}=\frac{e^{2}}{4\pi {\varepsilon_{0}}}( \frac{1}{r^{2}}+\frac{\beta }{r^{3}} ) $ or, $ \frac{a_{0}n^{2}}{r^{3}}=\frac{1}{r^{2}}+\frac{\beta }{r^{3}}( \therefore a_{0}=\frac{{\varepsilon_{0}}h^{2}}{m\pi e^{2}}Given ) $
    $ \therefore r=a_{0}n^{2}-\beta $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें