Current Electricity Charging Discharging Of Capacitors Question 131

[AIIMS 2005]

Options:

A) $ R _{1}=R _{2}=R _{3} $

B) $ R _{2}=R _{3} $ and $ R _{1}=4R _{2} $

C) $ R _{2}=R _{3} $ and $ R _{1}=\frac{1}{4}R _{2} $

D) $ R _{1}=R _{2}+R _{3} $

Show Answer

Answer:

Correct Answer: C

Solution:

As the voltage in $ R _{2} $ and $ R _{3} $ is same therefore, according to, $ H=\frac{V^{2}}{R}.t, $

$ R _{2}=R _{3} $ Also the energy in all resistance is same. \ $ i^{2}R _{1}t=i _{1}^{2}R _{2}t $ Using $ i _{1}=\frac{R _{3}}{R _{2}+R _{3}}i=\frac{R _{3}}{R _{3}+R _{3}}i=\frac{1}{2}i $ Thus $ i^{2}R _{1}t=\frac{i^{2}}{4}R _{2}t $ or, $ R _{1}=\frac{R _{2}}{4} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें