Current Electricity Charging Discharging Of Capacitors Question 654

Question: A cell of constant e.m.f. first connected to a resistance $ R _{1} $ and then connected to a resistance $ R _{2} $ . If power delivered in both cases is then the internal resistance of the cell is

[Orissa JEE 2005]

Options:

A) $ \sqrt{R _{1}R _{2}} $

B) $ \sqrt{\frac{R _{1}}{R _{2}}} $

C) $ \frac{R _{1}-R _{2}}{2} $

D) $ \frac{R _{1}+R _{2}}{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

Power dissipated $ =i^{2}R={{( \frac{E}{R+r} )}^{2}}R $ \ $ {{( \frac{E}{R _{1}+r} )}^{2}}R _{1}={{( \frac{E}{R _{2}+r} )}^{2}}R _{2} $

Therefore $ R _{1}(R _{2}^{2}+r _{2}+2R _{2}r)=R _{2}(R _{1}^{2}+r^{2}+2R _{1}r) $

Therefore $ R _{2}^{2}R _{1}+R _{1}r^{2}+2R _{2}r=R _{1}^{2}R _{2}+R _{2}r^{2}+2R _{1}R _{2}r $

Therefore $ (R _{1}-R _{2})r^{2}=(R _{1}-R _{2})r^{2}=(R _{1}-R _{2})R _{1}R _{2} $

Therefore $ r=\sqrt{R _{1}R _{2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें