Current Electricity Charging Discharging Of Capacitors Question 87

Question: The resistance of the filament of an electric bulb changes with temperature. If an electric bulb rated 220 volt and 100 watt is connected $ (220\times .8) $ volt sources, then the actual power would be

[CPMT 1989]

Options:

A) $ 100\times 0.8,watt $

B) $ 100\times {{(0.8)}^{2}}watt $

C) Between $ 100\times 0.8 $ watt and 100 watt

D) Between $ 100\times {{(0.8)}^{2}}watt $ and $ 100\times 0.8 $ watt

Show Answer

Answer:

Correct Answer: D

Solution:

$ P _{1}=\frac{{{(220)}^{2}}}{R _{1}} $ and $ P _{2}=\frac{{{(220\times 0.8)}^{2}}}{R _{2}} $

$ \frac{P _{2}}{P _{1}}=\frac{{{(220\times 0.8)}^{2}}}{{{(220)}^{2}}}\times \frac{R _{1}}{R _{2}} $

Therefore $ \frac{P _{2}}{P _{1}}={{(0.8)}^{2}}\times \frac{R _{1}}{R _{2}} $ Here R2 < R1 (because voltage decreases from 220 V ® 220 ´ 0.8 V It means heat produced ® decreases) So $ \frac{R _{1}}{R _{2}}>1 $

Therefore $ P _{2}>{{(0.8)}^{2}}P _{1} $

Therefore $ P _{2}>{{(0.8)}^{2}}\times 100,W $ Also $ \frac{P _{2}}{P _{1}}=\frac{(220\times 0.8)i _{2}}{220,i _{1}}, $ Since $ i _{2}<i _{1} $ (we expect) So $ \frac{P _{2}}{P _{1}}<0.8 $

Therefore $ P _{2}<(100\times 0.8) $ Hence the actual power would be between $ 100\times {{(0.8)}^{2}}W $ and (100 ´ 0.8) W



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें