Current Electricity Charging Discharging Of Capacitors Question 169

Question: A wire of resistor R is bent into a circular ring of radius r. Equivalent resistance between two points X and Y on its circumference, when angle XOY is a, can be given by

Options:

A) $ \frac{R\alpha }{4{{\pi }^{2}}}(2\pi -\alpha ) $

B) $ \frac{R}{2\pi }(2\pi -\alpha ) $

C) R (2p ? a)

D) $ \frac{4\pi }{R\alpha }(2\pi -\alpha ) $

Show Answer

Answer:

Correct Answer: A

Solution:

Here $ R _{XWY}=\frac{R}{2\pi r}\times (r\alpha )=\frac{R\alpha }{2\pi } $

$ ( \because ,\alpha =\frac{l}{r} ) $ and $ R _{XZY}=\frac{R}{2\pi r}\times r(2\pi -\alpha )=\frac{R}{2\pi }(2\pi -\alpha ) $

$ R _{eq}=\frac{R _{XWY}R _{XZY}}{R _{XWY}+R _{XZY}}=\frac{\frac{R\alpha }{2\pi }\times \frac{R}{2\pi }(2\pi -\alpha )}{\frac{R\alpha }{2\pi }+\frac{R(2\pi -\alpha )}{2\pi }} $

$ =\frac{R\alpha }{4{{\pi }^{2}}}(2\pi -\alpha ) $