Dual Nature Of Light Question 115

Question: Let $ {\lambda_{\alpha }} $ , $ {\lambda_{\beta }} $ and $ {{{\lambda }’}{\alpha }} $ denote the wavelengths of the X-rays of the $ {K{\alpha }},,{K_{\beta }} $ and $ {L_{\alpha }} $ lines in the characteristic X-rays for a metal

Options:

A) $ {\lambda_{\alpha }}>{{{\lambda }’}{\alpha }}>{\lambda{\beta }} $

B) $ {{{\lambda }’}{\alpha }}>{\lambda{\beta }}>{\lambda_{\alpha }} $

C) $ \frac{1}{{\lambda_{\beta }}}=\frac{1}{{\lambda_{\alpha }}}+\frac{1}{{{{{\lambda }’}}_{\alpha }}} $

D) $ \frac{1}{{\lambda_{\alpha }}}+\frac{1}{{\lambda_{\beta }}}=\frac{1}{{{{{\lambda }’}}_{\alpha }}} $

Show Answer

Answer:

Correct Answer: C

Solution:

According to the energy diagram of X-ray spectra $ \because \Delta E=\frac{hc}{\lambda } $
$ \Rightarrow \lambda \propto \frac{1}{\Delta E} $ (DE = Energy radiated when e? jumps from, higher energy orbit to lower energy orbit) $ \because {{(\Delta E)}{{k{\beta }}}}>{{(\Delta E)}{{k{\alpha }}}}>{{(\Delta E)}{{L{\alpha }}}} $
$ \therefore {{{\lambda }’}{\alpha }}>{\lambda{\alpha }}>{\lambda_{\beta }} $ Also $ {{(\Delta E)}{{k{\beta }}}}={{(\Delta E)}{{k{\alpha }}}}+{{(\Delta E)}{{L{\alpha }}}} $
$ \Rightarrow \frac{hc}{{\lambda_{\beta }}}=\frac{hc}{{\lambda_{\alpha }}}+\frac{hc}{{{{{\lambda }’}}{\alpha }}} $
$ \Rightarrow \frac{1}{{\lambda
{\beta }}}=\frac{1}{{\lambda_{\alpha }}}+\frac{1}{{{{{\lambda }’}}_{\alpha }}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें