Dual Nature Of Light Question 361

Question: A particle A of mass m and initial velocity v m collides with a particle B of mass $ \frac{m}{2} $ which is at rest. The collision is head on, and elastic. The ratio of the de-Broglie wavelengths $ {\lambda_{A}} $ to $ {\lambda_{B}} $ after the collision is

Options:

A) $ \frac{2}{3} $

B) $ \frac{1}{2} $

C) $ \frac{1}{3} $

D) $ 2 $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] From question, $ m_{A}=M;m=\frac{m}{2} $ $ u_{A}=V\text{ }u_{B}=0 $ Let after collision velocity of $ A=V_{1} $ and velocity of $ B=V_{2} $ Applying law of conservation of momentum, $ mu=mv_{1}+( \frac{m}{2} )v_{2}\text{ or, 2}\mu \text{=2}v_{1}\text{ +}{{v}{2}} $ ?.(i) By law of collision $ e=\frac{v{2}-v_{1}}{u-1}\text{ or }u=v_{2}-v_{1} $ ?(ii) $ [ \because \text{collision is elastic, }e=1 ] $ using eqns (i) and (11) $ v_{1}=\frac{1}{3}\mu \text{ and }v_{2}=\frac{4}{3}u $ De-Broglie wavelength $ \lambda =\frac{h}{p} $
$ \therefore \frac{{\lambda_{A}}}{{\lambda_{B}}}=\frac{P_{B}}{P_{A}}=\frac{\frac{m}{2}\times \frac{4}{3}u}{m\times \frac{1}{3}}=2 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें