Dual Nature Of Light Question 392

Question: An atom emits a photon of wavelength X = 600 m by transition from an excited state of life time $ 8\times {{10}^{-9}}s $ . If $ \Delta ,v $ represents the minimum uncertainty in the frequency of the photon, the fractional width $ \frac{\Delta v}{v} $ of the spectral line is of the order of

Options:

A) $ {{10}^{-,4}} $

B) $ {{10}^{-6}} $

C) $ {{10}^{-,8}} $

D) $ {{10}^{-10}} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ \Delta E.\Delta t\sim h $ $ E=\frac{hc}{\lambda }\text{ }\Delta \Epsilon =\frac{hc}{\lambda }\frac{\Delta \lambda }{\lambda } $
$ \therefore \frac{hc}{\lambda }\frac{\Delta \lambda }{\lambda }.\Delta t\sim h $ Now, $ c=v\lambda $ $ v\Delta \lambda +\lambda \Delta v=0 $ $ vD\lambda =-\lambda \Delta v $
$ \therefore \frac{\Delta \lambda }{\lambda }=-\frac{\Delta v}{v}\text{ }\therefore \frac{ch}{\lambda }\frac{\Delta v}{v}\Delta t\sim h $
$ \therefore \frac{\Delta v}{v}\sim \frac{h}{\Delta t}.\frac{\lambda }{hc}\sim \frac{\lambda }{\Delta tc}=\frac{600\times {{10}^{-9}}}{8\times {{10}^{-9}}\times 3\times 10^{8}} $ $ \frac{\Delta v}{v}\sim {{10}^{-6}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें