Dual Nature Of Light Question 413

Question: Two identical non-relative particles A and B move right angles to each other, processing de Broglie wavelength $ {\lambda_{1}} $ and $ ,{\lambda_{2}} $ , respectively. The de Broglie wavelength of each particle in their center of mass frame of reference is

Options:

A) $ {\lambda_{1}}+{\lambda_{2}} $

B) $ 2{\lambda_{1}}{\lambda_{2}}/( \sqrt{\lambda _{1}^{2}+\lambda _{2}^{2}} ) $

C) $ 2{\lambda_{1}}{\lambda_{2}}/( \sqrt{| \lambda _{1}^{2}+\lambda _{2}^{2} |} ) $

D) $ ( {\lambda_{1}}+{\lambda_{2}} )/2 $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let m be the mass of each particle, then $ {\lambda_{1}}=( h/mv_{1} ) $ and $ {\lambda_{2}}=( h/mv_{2} ) $ where $ v_{1} $ and $ v_{2} $ are the velocities of two particles as shown in the figure.

$ {\vec{v}_{CM}}=\frac{m{\vec{v}_1}+m{\vec{v}_2}}{2m}$=$\frac{{{{\vec{v}}}_1}-{{{\vec{v}}}_2}}{2} $

$ {\vec{v}_{1c}}$=${\vec{v}1}$-${\vec{v}{CM}}$

=$\frac{{{{\vec{v}}}_1}-{{{\vec{v}}}_2}}{2} $

Velocity of A w.r.t. C frame is $ {{\vec{v}}{1c}}={{\vec{v}}{1}}-{{\vec{v}}{CM}}=\frac{{{{\vec{v}}}{1}}-{{{\vec{v}}}_{2}}}{2} $

$ | {{{\vec{v}}}{1c}} |=\frac{\sqrt{{{{\vec{v}}}{1}}-{{{\vec{v}}}{2}}}}{2}=,| {{{\vec{v}}}{2c}} | $

So, required wavelength is $ \lambda =\frac{h}{3|{{{\vec{v}}}_{1c}}|}=\frac{h}{m}\times \frac{2}{\frac{h}{m}\sqrt{\frac{1}{\lambda _{1}^{2}}+\frac{1}{\lambda _{2}^{2}}}} $

$ =\frac{2{\lambda_{1}}{\lambda_{2}}}{\sqrt{\lambda _{1}^{2}+\lambda _{2}^{2}}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें