Dual Nature Of Light Question 414
Question: The ratio of the $ {\lambda_{\min }} $ in a Coolidge tube to $ {\lambda_{deBroglie}} $ of the electrons striking the target depends on accelerating potential V as
Options:
A) $ \frac{{\lambda_{\min }}}{{\lambda_{deBroglie}}}\propto \sqrt{V} $
B) $ \frac{{\lambda_{\min }}}{{\lambda_{deBroglie}}}\propto V $
C) $ \frac{{\lambda_{\min }}}{{\lambda_{deBroglie}}}\propto \frac{1}{\sqrt{V}} $
D) $ \frac{{\lambda_{\min }}}{{\lambda_{deBroglie}}}\propto \frac{1}{V} $
Show Answer
Answer:
Correct Answer: C
Solution:
[c] $ {\lambda_{\min }}=\frac{hc}{eV} $ and $ {\lambda_{de-broglie}}=\frac{h}{p}=\frac{h}{\sqrt{2meV}}. $