Dual Nature Of Light Question 93

In a photoemissive cell with incident wavelength $ \lambda $ , the fastest electron has speed v. If the incident wavelength is changed to $ 3\lambda /4 $ , the speed of the fastest emitted electron will be [CBSE PMT 1998]

Options:

A) $ v\ {{(3/4)}^{1/2}} $

B) $ v\ {{(4/3)}^{1/2}} $

C) Less than $ v\ {{(4/3)}^{1/2}} $

D) Greater than $ v\ {{(4/3)}^{1/2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ h\nu -W_{0}=\frac{1}{2}mv_{\max }^{2}\Rightarrow \frac{hc}{\lambda }-\frac{hc}{{\lambda_{0}}}=\frac{1}{2}mv_{\max }^{2} $
$ \Rightarrow hc( \frac{{\lambda_{0}}-\lambda }{\lambda_{0} \lambda} )=\frac{1}{2}mv_{\max }^{2} $ $ \Rightarrow {v_{\max }}=\sqrt{\frac{2hc}{m}( \frac{{\lambda_{0}}-\lambda }{\lambda {\lambda_{0}}} )} $ When wavelength is $ \lambda $ and velocity is v, then $ v=\sqrt{\frac{2hc}{m}( \frac{{\lambda_{0}}-\lambda }{\lambda {\lambda_{0}}} )} $ ?. (i) When wavelength is $ \frac{3\lambda }{4} $ and velocity is v? then $ v’=\sqrt{\frac{2hc}{m}[ \frac{{\lambda_{0}}-(3\lambda /4)}{(3\lambda /4)\times {\lambda_{0}}} ]} $ ?.(ii) Divide equation (ii) by (i), we get $ \frac{v’}{v}=\sqrt{\frac{[{\lambda_{0}}-(3\lambda /4)]}{\frac{3}{4}\lambda {\lambda_{0}}}\times \frac{\lambda {\lambda_{0}}}{{\lambda_{0}}-\lambda }} $ $ v’=v{{( \frac{4}{3} )}^{1/2}}\sqrt{\frac{[{\lambda_{0}}-(3\lambda /4)]}{{\lambda_{0}}-\lambda }} $ i.e. $ v’>v{{( \frac{4}{3} )}^{1/2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें