Electro Magnetic Induction And Alternating Currents Question 196

Question: In a uniform magnetic field of induction B a wire in the form of a semicircle of radius r rotates about the diameter of the circle with an angular frequency $ \omega $ . The axis of rotation is perpendicular to the field. If the total resistance of the circuit is R, the mean power generated per period of rotation is

Options:

A) $ \frac{{{(B\pi r\omega )}^{2}}}{2R} $

B) $ \frac{{{(B\pi r^{2}\omega )}^{2}}}{8R} $

C) $ \frac{B\pi r^{2}\omega }{2R} $

D) $ \frac{{{(B\pi r{{\omega }^{2}})}^{2}}}{8R} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \phi =\overset{\to }{\mathop{B}},.\overset{\to }{\mathop{A}}, $ ;

    $ \phi =BA,\cos ,\omega t $ $ \varepsilon =-\frac{d\phi }{dt}=\omega BA,\sin ,\omega t $ ;

    $ i=\frac{\omega BA}{R},\sin ,\omega t $

    $ P_{inst}=i^{2}R={{( \frac{\omega BA}{R} )}^{2}}\times R,{{\sin }^{2}},\omega t $

    $ P_{avg}=\frac{\int\limits_{0}^{T}{P_{inst}\times dt}}{\int\limits_{0}^{T}{dt}}=\frac{{{(\omega ,B,A)}^{2}}}{R}\frac{\int\limits_{0}^{T}{{{\sin }^{2}},\omega ,tdt}}{\int\limits_{0}^{T}{dt}}=\frac{1}{2},\frac{{{(\omega ,B,A)}^{2}}}{R} $
    $ \therefore P_{avg}=,\frac{{{(\omega ,B,\pi ,r^{2})}^{2}}}{8,R} $

    $ [ A=\frac{\pi ,r^{2}}{2} ] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ