Electro Magnetic Induction And Alternating Currents Question 306

Question: A copper rod of length l is rotated about one end perpendicular to the magnetic field B with constant angular velocity $ \omega $ . The induced e.m.f. between the two ends is [MP PMT 1992; Orissa JEE 2003]

Options:

A) $ \frac{1}{2}B\omega l^{2} $

B) $ \frac{3}{4}B\omega l^{2} $

C) $ B\omega l^{2} $

D) $ 2B\omega l^{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

If in time t. the rod turns by an angle q, the area generated by the rotation of rod will be

$ =\frac{1}{2}l\times l\theta $ $ =\frac{1}{2}l^{2}\theta $

So the flux linked with the area generated by the rotation of rod

$ \varphi =B\ ( \frac{1}{2}l^{2}\theta )\cos 0=\frac{1}{2}Bl^{2}\theta =\frac{1}{2}Bl^{2}\omega ,t $

And so $ e=\frac{d\varphi }{dt}=\frac{d}{dt}( \frac{1}{2}Bl^{2}\omega t )=\frac{1}{2}Bl^{2}\omega $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ