Electro Magnetic Induction And Alternating Currents Question 344

Question: How much length of a very thin wire is required to obtain a solenoid of length $ l_{0} $ and inductance L

Options:

A) $ \sqrt{\frac{2\pi Ll_{0}}{{\mu_{0}}}} $

B) $ \sqrt{\frac{4\pi Ll_{0}}{\mu _{0}^{2}}} $

C) $ \sqrt{\frac{4\pi Ll_{0}}{{\mu_{0}}}} $

D) $ \sqrt{\frac{8\pi Ll_{0}}{{\mu_{0}}}} $

Show Answer

Answer:

Correct Answer: C

Solution:

Suppose solenoid has N turns, each of radius r and length of wire is l. It’s self inductance $ L=\frac{{\mu_{0}}N^{2}A}{l_{0}}=\frac{{\mu_{0}}N^{2}\pi r^{2}}{l_{0}} $ …. (i) Also length of the wire $ l=N\times 2\pi r $
$ \Rightarrow N^{2}r^{2}=\frac{l^{2}}{4{{\pi }^{2}}} $ …. (ii) From equation (i) and (ii) $ l=\sqrt{\frac{4\pi Ll_{o}}{{\mu_{o}}}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ