Electro Magnetic Induction And Alternating Currents Question 351

Question: A simple pendulum with bob of mass m and conducting wire of length L swings under gravity through an angle $ 2\theta $ . The earth’s magnetic field component in the direction perpendicular to swing is B. Maximum potential difference induced across the pendulum is [MP PET 2005]

Options:

A) $ 2BL\sin ( \frac{\theta }{2} ){{(gL)}^{1/2}} $

B) $ BL\sin ( \frac{\theta }{2} )(gL) $

C) $ BL\sin ( \frac{\theta }{2} ){{(gL)}^{3/2}} $

D) $ BL\sin ( \frac{\theta }{2} ){{(gL)}^{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

Þ $ h=L(1-\cos \theta ) $ …(i)

Maximum velocity at equilibrium is given by

$ v^{2}=2gh=2g,L(1-\cos \theta ) $ $ =2g\ L( 2{{\sin }^{2}}\frac{\theta }{2} ) $

Þ $ v=2\sqrt{gL}\sin \frac{\theta }{2} $

Thus, max. potential difference $ {V_{\max }}=BvL $ $ =B\times 2\sqrt{gL}\sin \frac{\theta }{2}L $ $ =2BL\sin \frac{\theta }{2}{{(gL)}^{1/2}}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें