Electro Magnetic Induction And Alternating Currents Question 135

Question: An alternating e.m.f. of angular frequency $ \omega $ is applied across an inductance. The instantaneous power developed in the circuit has an angular frequency [Roorkee 1999]

Options:

A) $ \frac{\omega }{4} $

B) $ \frac{\omega }{2} $

C) $ \omega $

D) $ 2\omega $

Show Answer

Answer:

Correct Answer: D

Solution:

The instantaneous values of emf and current in inductive circuit are given by

$ E=E_{0}\sin \omega t $ and $ i=i_{0}\sin ( \omega t-\frac{\pi }{2} ) $ respectively.

So, $ P_{inst}=Ei=E_{0}\sin \omega t\times i_{0}\sin ( \omega t-\frac{\pi }{2} ) $

$ =E_{0}i_{0}\sin \omega t( \sin \omega t\cos \frac{\pi }{2}-\cos \omega t\sin \frac{\pi }{2} ) $

$ =E_{0}i_{0}\sin \omega t\ \cos \omega t $ $ =\frac{1}{2}E_{0}i_{0}\sin 2\omega t $ $ (\sin 2\omega t=2\sin \omega t\ \cos \omega t) $

Hence, angular frequency of instantaneous power is $ 2\omega $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ