Electro Magnetic Induction And Alternating Currents Question 475

Question: A plane loop, shaped as two squares of sides a =1 m and b=0.4 m is introduced into a uniform magnetic field $ \bot $ to the plane of loop. The magnetic field varies as $ B={{10}^{-3}}\sin $ (100t) T. The amplitude of the current induced in the loop if its resistance per unit length is $ r=5,m{{\Omega }^{-1}} $ is

Options:

A) 2 A

B) 3 A

C) 4 A

D) 5 A

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \phi $ (flux linked) $ =a^{2}B,\cos ,0^{o}-b^{2}B,\cos ,180^{o} $

    $ E=-\frac{d\phi }{dt}=-(a^{2}-b^{2})\frac{dB}{dt} $

    $ =(a^{2}-b^{2})B_{0},\omega \cos ,\omega t $ where $ B=B_{0} $ , $ \sin ,\omega t $ ,

    $ B_{0}={{10}^{-3}}T $ ,

    $ \omega =100 $
    $ \therefore {I_{\max }}=(a^{2}-b^{2})\frac{B_{0}\omega }{R} $

    and $ R=(4a+4b)r=4(a+b)r $
    $ \therefore {I_{\max }}=\frac{(a-b)B_{0}\omega }{4r}=\frac{(1-0.4)\times {{10}^{-3}}\times 100}{4\times 5\times {{10}^{-3}}}=3A $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें