Electro Magnetic Induction And Alternating Currents Question 514

Question: A uniform circular loop of radius a and resistance R is placed perpendicular to a uniform magnetic field B. One half of the loop is rotated about the diameter with angular velocity $ \omega $ as shown in Fig. Then, the current in the loop is

Options:

A) $ \frac{\pi a^{2}B\omega }{4R} $ , when $ \theta $ is zero

B) $ \frac{\pi a^{2}B\omega }{2R} $ , when $ \theta $ is zero

C) zero, when $ \theta =\pi /2 $

D) $ \frac{\pi a^{2}B\omega }{2R} $ , when $ \theta =\pi /2 $

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ \theta =\omega t $ .

    Only half circular part will be involved in inducing emf, so effective area

    $ A=\frac{\pi a^{2}}{2} $

    $ \phi =BA,\cos ,\theta $

    $ e=-\frac{d\phi }{dt} $

    $ =+BA,\sin ,\theta ( \frac{d\theta }{dt} ) $

    $ \Rightarrow ,e=\frac{B\pi a^{2}}{2}\omega ,\sin ,\theta $

    $ I=\frac{e}{R}=\frac{B\pi a^{2}\omega }{2R},\sin ,\theta $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें