Electro Magnetic Induction And Alternating Currents Question 157

Question: If a direct current of value ampere is superimposed on an alternative current $ I=b,\sin ,\omega t $ flowing through a wire, what is the effective value of the resulting current in the circuit?

Options:

A) $ {{[ a^{2}-\frac{1}{2}b^{2} ]}^{1/2}} $

B) $ {{[ a^{2}+b^{2} ]}^{1/2}} $

C) $ {{[ \frac{a^{2}}{2}+b^{2} ]}^{1/2}} $

D) $ {{[ a^{2}+\frac{b^{2}}{2} ]}^{1/2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • as current any instant in the circuit will be

    $ I=I_{dc}+I_{ac}=a+b,\sin ,\omega t $

    so, $ I_{eff}={{[ \frac{\int_{0}^{T}{I^{2}dt}}{\int_{0}^{T}{dt}} ]}^{1/2}}={{[ \frac{1}{T}\int_{0}^{T}{{{(a+b,\sin ,\omega t)}^{2}}dt} ]}^{1/2}} $ i.e.

    $ I_{eff}={{[ \frac{1}{T}\int_{0}^{T}{(a^{2}+2ab,\sin ,\omega t+b^{2},{{\sin }^{2}}\omega t)dt} ]}^{1/2}} $

    But as $ \frac{1}{T}\int_{0}^{T}{\sin ,\omega t,dt=0} $ and $ \frac{1}{T}\int_{0}^{T}{{{\sin }^{2}},\omega t,dt=\frac{1}{2}} $ So, $ I_{eff}={{[ a^{2}+\frac{1}{2}b^{2} ]}^{1/2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ