Electro Magnetic Induction And Alternating Currents Question 192

Question: A series LR circuit is connected to an ac source of frequency $ \omega $ and the inductive reactance is equal to 2R. A capacitance of capacitive reactance equal to R is added in series with L and R. The ratio of the new power factor to the

Options:

A) $ \sqrt{\frac{2}{3}} $

B) $ \sqrt{\frac{2}{5}} $

C) $ \sqrt{\frac{3}{2}} $

D) $ \sqrt{\frac{5}{2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ Powerfactor{{}_{( old )}} $

$ =\frac{R}{\sqrt{R^{2}+X_{L}^{2}}}=\frac{R}{\sqrt{R^{2}+{{(2R)}^{2}}}}=\frac{R}{\sqrt{5R}} $

$ Powerfacto{r_{(new)}} $

$ =\frac{R}{\sqrt{R^{2}+{{(X_{L}-X_{C})}^{2}}}}=\frac{R}{\sqrt{R^{2}+{{(2R-R)}^{2}}}}=\frac{R}{\sqrt{2}R} $

$ \therefore ,\frac{New,power,factor}{Old,power,factor}=\frac{\frac{R}{\sqrt{2}R}}{\frac{R}{\sqrt{5}R}}=\sqrt{\frac{5}{2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ