Electrostatics Question 597

Question: A parallel plate capacitor of area A, plate separation d and capacitance C is filled with three different dielectric materials having dielectric constants $ k _{1},k _{2} $ and $ k _{3} $ as shown. If a single dielectric material is to be used to have the same capacitance C in this capacitor, then its dielectric constant k is given by [IIT-JEE Screening 2000]

Options:

A) $ \frac{1}{k}=\frac{1}{k _{1}}+\frac{1}{k _{2}}+\frac{1}{2k _{3}} $

B) $ \frac{1}{k}=\frac{1}{k _{1}+k _{2}}+\frac{1}{2k _{3}} $

C) $ k=\frac{k _{1}k _{2}}{k _{1}+k _{2}}+2k _{3} $

D) $ k=k _{1}+k _{2}+2k _{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ C _{1}=\frac{K _{1}{\varepsilon _{0}}\frac{A}{2}}{( \frac{d}{2} )}=\frac{K _{1}{\varepsilon _{0}}A}{d} $

$ C _{2}=\frac{K _{2}{\varepsilon _{0}}\frac{A}{2}}{( \frac{d}{2} )}=\frac{K _{2}{\varepsilon _{0}}A}{d} $ and $ C _{3}=\frac{K _{3}{\varepsilon _{0}}A}{( \frac{d}{2} )}=\frac{2K _{3}{\varepsilon _{0}}A}{d} $

$ \frac{1}{C _{eq}}=\frac{1}{C _{1}+C _{2}}+\frac{1}{C _{3}} $

$ =\frac{1}{\frac{{\varepsilon _{0}}A}{d}(K _{1}+K _{2})}+\frac{1}{\frac{{\varepsilon _{0}}}{d}\times 2K _{3}} $

$ \frac{1}{C _{eq}}=\frac{d}{{\varepsilon _{0}}A}[ \frac{1}{K _{1}+K _{2}}+\frac{1}{2K _{3}} ] $

$ C _{eq}={{[ \frac{1}{K _{1}+K _{2}}+\frac{1}{2K _{3}} ]}^{-1}}.\frac{{\varepsilon _{0}}A}{d} $ So $ K _{eq}={{[ \frac{1}{K _{1}+K _{2}}+\frac{1}{2K _{3}} ]}^{-1}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें