Electrostatics Question 235

Question: Two identical thin rings each of radius R meters are coaxially placed at a distance R meters apart. If Q1 coulomb and Q2 coulomb are respectively the charges uniformly spread on the two rings, the work done in moving a charge qfrom the centre of one ring to that of other is [MP PMT 1999; AMU (Engg.) 1999]

Options:

A) Zero

B) $ \frac{q(Q _{1}-Q _{2})(\sqrt{2}-1)}{\sqrt{2}.4\pi {\varepsilon _{0}}R} $

C) $ \frac{q\sqrt{2}(Q _{1}+Q _{2})}{4\pi {\varepsilon _{0}}R} $

D) $ \frac{q(Q _{1}+Q _{2})(\sqrt{2}+1)}{\sqrt{2}.4\pi {\varepsilon _{0}}R} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ W=q({V _{O _{2}}}-{V _{O _{1}}}) $

where $ {V _{O _{1}}}=\frac{Q _{1}}{4\pi {\varepsilon _{0}}R}+\frac{Q _{2}}{4\pi {\varepsilon _{0}}R\sqrt{2}} $

and $ {V _{O _{2}}}=\frac{Q _{2}}{4\pi {\varepsilon _{0}}R}+\frac{Q _{1}}{4\pi {\varepsilon _{0}}R\sqrt{2}} $

therefore $ {V _{O _{2}}}-{V _{O _{1}}}=\frac{(Q _{2}-Q _{1})}{4\pi {\varepsilon _{0}}R}[ 1-\frac{1}{\sqrt{2}} ] $

So, $ W=\frac{q.(Q _{2}-Q _{1})}{4\pi {\varepsilon _{0}}R}\frac{(\sqrt{2}-1)}{\sqrt{2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें