Electrostatics Question 693

Three identical spheres, each having a charge q and radius R, are kept in such a way that each touches the other two. The magnitude of the electric force any sphere exerts on the other two is

Options:

A) $ \frac{1}{4\pi {\varepsilon _{0}}}{{( \frac{q}{R} )}^{2}} $

B) $ \frac{1}{4\pi {\varepsilon _{0}}}{{( \frac{q}{R} )}^{2}} $

C) $ \frac{\sqrt{3}}{16\pi {\varepsilon _{0}}}{{( \frac{q}{R} )}^{2}} $

D) $ \frac{\sqrt{5}}{16\pi {\varepsilon _{0}}}{{( \frac{q}{R} )}^{2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] For external points, a charged sphere behaves as if he whole of its charge is concentrated at its center.

Force on A due to B.

$ F _{AB}=\frac{1}{4\pi {\varepsilon _{0}}}\frac{q^{2}}{{{( R )}^{2}}} $

$ =\frac{1}{4\pi {\varepsilon _{0}}}\frac{q^{2}}{4R^{2}}\text{along }\overrightarrow{BA} $

And force on A due to C,

$ F _{AB}=\frac{1}{4\pi {\varepsilon _{0}}}\frac{q^{2}}{{{( 2R )}^{2}}}==\frac{1}{4\pi {\varepsilon _{0}}}\frac{q^{2}}{4R^{2}}\text{along }\overrightarrow{\text{CA}} $

Now as angle between BA and CA is $ 60^\circ $

and $ |F _{AB}|=|F _{AC}|=F $

$ \therefore F _{A}=\sqrt{F^{2}+F^{2}+2FF\cos 60}=\sqrt{3}F $

$ =\frac{1}{4\pi {\varepsilon _{0}}}\frac{\sqrt{3}}{4}{{( \frac{q}{R} )}^{3}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें