Electrostatics Question 717

Question: A particle of charge q and mass m moves rectilinearly under the action of electric field $ E=A-Bx, $ where A and B are positive constants and x is distance from the point where particle was initially at rest then the distance traveled by the particle before coming to rest and acceleration of particle at that moment are respectively:

Options:

A) $ \frac{2A}{B},0 $

B) $ 0,-\frac{qA}{m} $

C) $ \frac{2A}{B},-\frac{qA}{m} $

D) $ \frac{-2A}{B},-\frac{qA}{m} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ F=qE=q( A-Bx ) $

$ ma=q( A-Bx )\Rightarrow a=\frac{q}{m}( A-Bx ) $ .(i)

$ \frac{vdv}{dx}=\frac{q}{m}( A-Bx );vdv=\frac{q}{m}q( A-Bx )dx $

$ \int\limits _{0}^{0}{vdv=\frac{q}{m}}\int\limits _{0}^{x}{(A-Bx)dx};Ax-\frac{Bx^{2}}{2}=0 $

$ x=0,x=\frac{2A}{B} $ -(ii)

From eqs. (i) and (ii) $ \frac{q}{m}(A-Bx)=\frac{q}{m}( A-B\times \frac{2A}{B} )=\frac{-aA}{m} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें