Electrostatics Question 734

Question: A solid sphere of radius R has a charge Q distributed in its volume with a charge density$ \rho =kr^{a} $ , where k and an are constants and r is the distance from its center. If the electric field at $ r=\frac{R}{2} $ is $ \frac{1}{8} $ times that at $ r=R $ , the value of a is.

Options:

A) 3

B) 5

C) 2

D) both [a] and [b]

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Using Gauss’s law, we have $ \int _{\vec{E}.d\vec{A}}=\frac{1}{{\in _{0}}}\int _{{}}^{{}}{( \rho dv )=\frac{1}{{\in _{0}}}\int _{0}^{R}{kr^{a}\times 4\pi r^{2}dr}} $

$ \text{or }E\times 4\pi r^{2}=( \frac{4\pi k}{{\in _{0}}} )\frac{{{R}^{( a+3 )}}}{( a+3 )}\text{ }$

$\therefore E _{1}=\frac{k{{R}^{( a+1 )}}}{{\in _{0}}( a+3 )} $

$ \text{For } r = \frac{R}{2}\cdot E _{2}$

=$\frac{k{(\frac{R}{2} )}^{a+1}}{\in _{0}}( a+3 )=\frac{1}{8}\frac{k{{R}^{( a+1 )}}}{{\in _{0}}( a+3 )} $

$ \therefore {{2}^{\frac{1}{a+1}}}=\frac{1}{8}\text{ or }a=2. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें