Electrostatics Question 736

Question: A system consists of a uniform charged sphere of radius R and a surrounding medium filled by a charge with the volume density $ \rho =\frac{\alpha }{r}, $ where $ \alpha $ a positive constant is and r is the distance from the center of the charge. The charge of the sphere for which the electric field intensity E outside the sphere is independent of r is-

Options:

A) $ \pi R^{2}\alpha $

B) $ 4\pi R^{2}\alpha $

C) $ 2\pi R^{2}\alpha $

D) $ 3\pi R^{2}\alpha /4 $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ \int _{E _{p}dS=\frac{Q+Q’}{{\varepsilon _{0}}}} $

Where Q’ is the charge outside the sphere

$ Q{’ _{1}}\int\limits _{R}^{r}{dV}=\int\limits _{R}^{r}{\frac{\alpha }{r}\times 4\pi r^{2}dr} $

$ =4\pi \alpha {{( \frac{r^{2}}{2} )}^{r}}=4\pi \alpha ( \frac{r^{2}}{2}-\frac{R^{2}}{2} )=2\pi \alpha ( r^{2}-R^{2} ) $

$ E _{p}4\pi r^{2}=\frac{Q+2\pi \alpha (r^{2}-R^{2})}{{\varepsilon _{0}}} $

$ E _{p}=\frac{Q}{4\pi r^{2}{\varepsilon _{0}}}+\frac{\alpha }{2{\varepsilon _{0}}}-\frac{\alpha R^{2}}{2r^{2}\varepsilon {{} _{0}}} $

E is independent of r if

$ \frac{Q}{4\pi r^{2}{\varepsilon _{0}}}-\frac{\alpha R^{2}}{2r^{2}{\varepsilon _{0}}}=0 $

$ Q=2\pi R^{2}\alpha $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें