Electrostatics Question 737

Question: A sphere of radius R carries charge density $ \rho $ proportional to the square of the distance from the center such that $ \rho =CR^{2} $ , where C is a positive constant. At a distance R/2 from the center, the magnitude of the electric field is

Options:

A) $ \frac{CR^{3}}{20{\in _{0}}} $

B) $ \frac{CR^{3}}{10{\in _{0}}} $

C) $ \frac{CR^{3}}{5{\in _{0}}} $

D) $ \frac{CR^{3}}{40{\in _{0}}} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] For, $ r=R/2 $ Using Gauss’s law, we have

$ \int _{\vec{E}.d\vec{A}=\frac{q _{in}}{{\varepsilon _{0}}}\text{ or }E\times 4\pi r^{2}=\int\limits _{0}^{R/2}{\frac{\rho 4\pi r^{2}dr}{\varepsilon { _{0}}}}} $

$ \text{or }E=\frac{Cr^{3}}{5{\in _{0}}}=\frac{CR^{3}}{40{\in _{0}}}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें