Electrostatics Question 748

Question: One-fourth of a sphere of radius R is removed as shown in Fig. An electric field E exists parallel to the xy plane. Find the flux through the curved part.

Options:

A) $ \pi R^{2}E $

B) $ \sqrt{2}\pi R^{2}E $

C) $ \pi R^{2}E/\sqrt{2} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ {\phi _{plain}}+{\phi _{curve}}=0\text{ or }{\phi _{plain}}=-{\phi _{curve}} $

$ {{\vec{A}} _{1}}=-\frac{\pi R^{2}}{2}\hat{i},{{\vec{A}} _{2}}=-\frac{\pi R^{2}}{2}\hat{j} $

$ \vec{E}=E\cos 45{}^\circ \hat{i}+E\sin 45{}^\circ \hat{j} $

$ =\frac{E}{\sqrt{2}}\hat{i}+\frac{E}{\sqrt{2}}\hat{j}\text{ and } $

$ \phi =\vec{E}.({{\vec{A}} _{1}}+{{\vec{A}} _{2}}) $

$ =\frac{-E}{\sqrt{2}}\frac{\pi rR^{2}}{2}-\frac{E}{\sqrt{2}}\frac{\pi rR^{2}}{2}=\frac{-\pi R^{2}E}{\sqrt{2}} $ This is the flux entering. So flux is $ \frac{\pi R^{2}E}{\sqrt{2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें