Electrostatics Question 764

Question: Two equally charged spheres of radii a and b are connected together. What will be the ratio of electric field intensity on their surfaces?

Options:

A) $ \frac{a}{b} $

B) $ \frac{a^{2}}{b^{2}} $

C) $ \frac{b}{a} $

D) $ \frac{b^{2}}{a^{2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let charge on each sphere =q When they are connected together their Now let charge on

$ a=q, $ and on $ b=2q-q _{1} $

$ \Rightarrow V _{a}=V _{b}\text{ or }\frac{1}{4\pi {\varepsilon _{0}}}\frac{q _{1}}{a}=\frac{1}{4\pi {\varepsilon _{0}}}\frac{2q-q _{1}}{b} $

$ \Rightarrow \frac{q _{1}}{2q-q _{1}}=\frac{a}{b} $

$ \frac{E _{a}}{E _{b}}=\frac{\frac{1.}{4\pi {\varepsilon _{0}}}\frac{q _{1}}{a^{2}}}{\frac{1}{4\pi {\varepsilon _{0}}}\frac{q _{2}}{b^{2}}}=( \frac{q _{1}}{2q-q _{1}} )\frac{b^{2}}{a^{2}} $

$ =\frac{a}{b}.\frac{b^{2}}{a^{2}}=\frac{b}{a}=b:a $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें