Electrostatics Question 258

A piece of cloud having area $ 25\times 10^{6}m^{2} $ and electric potential of $ 10^{5} $ volts. If the height of cloud is $ 750m $ , then energy of electric field between earth and cloud will be [RPET 1997]

Options:

V

2V

4V

D) ? 2V

Show Answer

Answer:

Correct Answer: A

Solution:

In case of a charged conducting sphere, the electric field inside the sphere is zero and the charge resides on the surface

$ {V _{\text{inside}}}={V _{\text{centre }}}={V _{\text{surface}}}=\frac{1}{4\pi {\varepsilon _{0}}}.\frac{q}{R} $

$ {V _{\text{outside}}}=\frac{1}{4\pi {\varepsilon _{0}}}.\frac{q}{r} $

If a and b are the radii of sphere and spherical shell respectively, then potential at their surface will be $ {V _{\text{sphere }}}=\frac{1}{4\pi {\varepsilon _{0}}}.\frac{Q}{a} $ and $ {V _{\text{shell}}}=\frac{1}{4\pi {\varepsilon _{0}}}.\frac{Q}{b} $

$ \therefore $

$ V={V _{\text{sphere }}}-{V _{\text{shell}}}=\frac{1}{4\pi {\varepsilon _{0}}} \left[ \frac{Q}{a}-\frac{Q}{b} \right] $

Now when the shell is given charge (3Q), then the potential will be

$ V_{\text{sphere}}=\frac{1}{4\pi {\varepsilon _{0}}}\left[ \frac{Q}{a}+\frac{-3Q}{b} \right], $

$ V{’ _{\text{shell}}}=\frac{1}{4\pi {\varepsilon _{0}}}[ \frac{Q}{b}+\frac{(-2Q)}{b} ] $

$ \therefore $

$ V{’ _{\text{sphere }}}-V{’ _{\text{shell}}}=\frac{1}{4\pi {\varepsilon _{0}}}[ \frac{Q}{a}-\frac{Q}{b} ]=V $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें