Em Waves Question 87

Question: The magnetic field in the plane electromagnetic field is given by: $ B _{y}=2\times {{10}^{-7}}\sin (0.5\times 10^{3}z+1.5\times 10^{11}t)T $ The expression for the electric field may be given by

Options:

A) $ E _{y}=2\times {{10}^{-7}}\sin (0.5\times 10^{3}z+1.5\times 10^{11}t)V/m $

B) $ E _{x}=2\times {{10}^{-7}}\sin (0.5\times 10^{3}z+1.5\times 10^{11}t)V/m $

C) $ E _{y}=60\sin (0.5\times 10^{3}z+1.5\times 10^{11}t)V/m $

D) $ E _{x}=60\sin (0.5\times 10^{3}z+1.5\times 10^{11}t)V/m $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ B _{y}=2\times {{10}^{-7}},\sin ,(0.5\times 10^{3}z+1.5\times 10^{11}t)T $ The electric vector is perpendicular to B as well as direction of propagation of electromagnetic wave.

Therefore $ E _{x} $ has to be taken. Further, $ E _{0}=B _{0}\times c $

$ =2\times {{10}^{-7}}\times 3\times 10^{8},V/m $

$ E _{0}=2\times {{10}^{-7}}\times 3\times 10^{8}=60,V/m $
$ \

Therefore $ The corresponding value of the electric field is $ Ex=60,\sin ,(0.5\times 10^{3}z+1.5\times 10^{11}t)V/m $