Em Waves Question 139

Question: The magnetic field of a beam emerging from a filter facing a floodlight is given by $ B _{0}=12\times {{10}^{-8}},\sin ,(1.20\times 10^{7}z-3.60\times 10^{15}t)T $ . What is the average intensity of the beam?

Options:

A) $ 1.72\times 10^{2},W/m^{2} $

B) $ 1.72,W/m^{2} $

C) $ 2.31,W/m^{2} $

D) $ 2.31,\times 10^{2}W/m^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] As we know that, The standard equation of magnetic field $ B=B _{0}\sin (kx-\omega t) $ And, the given equation is $ B=12\times {{10}^{-8}}\sin (1.20\times 10^{7}z-3.60\times 10^{15}t)T $ . On comparing this equation with standard equation (i), we have. $ B _{0}=12\times {{10}^{-8}} $ So, the average intensity of the beam $ I _{av}=\frac{1}{2}\frac{B _{0}^{2}}{{\mu _{0}}}\cdot c=\frac{1}{2}\times \frac{{{(12\times {{10}^{-8}})}^{2}}\times 3\times 10^{8}}{4\pi \times {{10}^{-7}}} $

$ =1.72W/m^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें