Em Waves Question 147

Question: In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of $ 2.0\times 10^{10} $ Hz and amplitude $ 48,V,{{m}^{-1}} $ . Then

Options:

A) the wavelength of the wave is $ 1.5\times {{10}^{-5}}m $

B) the amplitude of the oscillating magnetic field is $ 16\times {{10}^{-3}}T $

C) the average energy density of the E field is equal to the average energy density of the B field. $ [c=3\times 10^{8},m,{{s}^{-1}}.] $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Here c $ =3\times 10^{8}m/s $ , $ v=2\times 10^{10},Hz $ , $ E _{0}=48V/m $

$ \lambda =? $ , $ B _{0}=? $ , $ \overrightarrow{u _{E}}=? $ , $ \overrightarrow{u _{B}}=? $

$ \because c=v\lambda $
$ \Rightarrow ,\lambda =\frac{c}{v}=\frac{3\times 10^{8}}{2\times 10^{10}}=1.5\times {{10}^{-2}}m $

$ \frac{E _{0}}{B _{0}}=c\Rightarrow B _{0}=\frac{48}{3\times 10^{8}}=16\times {{10}^{-8}}T $ . Energy density due to electric field and magnetic field $ u _{E}=\frac{1}{2}{\varepsilon _{o}}E^{2},\And ,u _{B}=\frac{1}{2}{\mu _{o}}B^{2} $ We have $ E=cB $ and $ C^{2}=\frac{1}{{\mu _{o}}{\varepsilon _{o}}} $ so, $ U _{E}=\frac{1}{2}{\varepsilon _{o}}{{(cB)}^{2}}=\frac{1}{2}{\varepsilon _{o}}( \frac{1}{{\mu _{o}}{\varepsilon _{o}}} )B^{2}=\frac{1}{2{\mu _{o}}}B^{2}={U _{B}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें