Fluid Mechanics Viscosity Question 221
Question: The density $ \rho $ of water of bulk modulus B at a depth y in the ocean is related to the density at surface $ {\rho_{0}} $ by the relation
Options:
A) $ \rho ={\rho_{0}}\left[ 1-\frac{{\rho_{0}}gy}{B} \right] $
B) $ \rho ={\rho_{0}}\left[ 1+\frac{{\rho_{0}}gy}{B} \right] $
C) $ \rho ={\rho_{0}}\left[ 1+\frac{Beta }{{\rho_{0}}hgy} \right] $
D) $ \rho ={\rho_{0}}\left[ 1-\frac{B}{{\rho_{0}}gy} \right] $
Show Answer
Answer:
Correct Answer: B
Solution:
Bulk modulus, $ B=-V_{0}\frac{\Delta p}{\Delta V}\Rightarrow \Delta V=-V_{0}\frac{\Delta p}{B} $ Þ $ V=V_{0}\left[ 1-\frac{\Delta p}{B} \right] $ \ Density, $ \rho ={\rho_{0}}{{\left[ 1-\frac{\Delta p}{B} \right]}^{-1}}={\rho_{0}}\left[ 1+\frac{\Delta p}{B} \right] $ where, $ \Delta p=p-p_{0}=h{\rho_{0}}g $ = pressure difference between depth and surface of ocean\ $ \rho ={\rho_{0}}\left[ 1+\frac{{\rho_{0}}gy}{B} \right] $ (As h = y)