Fluid Mechanics Viscosity Question 221

Options:

A) $ \rho ={\rho_{0}}\left[ 1-\frac{{\rho_{0}}gy}{B} \right] $

B) $ \rho ={\rho_{0}}\left[ 1+\frac{{\rho_{0}}gy}{B} \right] $

C) $ \rho ={\rho_{0}}\left[ 1+\frac{Beta }{{\rho_{0}}hgy} \right] $

D) $ \rho ={\rho_{0}}\left[ 1-\frac{B}{{\rho_{0}}gy} \right] $

Show Answer

Answer:

Correct Answer: B

Solution:

Bulk modulus, $ B=-V_{0}\frac{\Delta p}{\Delta V}\Rightarrow \Delta V=-V_{0}\frac{\Delta p}{B} $ Þ $ V=V_{0}\left[ 1-\frac{\Delta p}{B} \right] $ \ Density, $ \rho ={\rho_{0}}{{\left[ 1-\frac{\Delta p}{B} \right]}^{-1}}={\rho_{0}}\left[ 1+\frac{\Delta p}{B} \right] $ where, $ \Delta p=p-p_{0}=h{\rho_{0}}g $ = pressure difference between depth and surface of ocean\ $ \rho ={\rho_{0}}\left[ 1+\frac{{\rho_{0}}gy}{B} \right] $ (As h = y)