Fluid Mechanics Viscosity Question 262

Question: What is the absolute pressure of the gas above the liquid surface in the tank shown in fig. Density of $ oil=820kg/m^{3} $ , density of mercury$ =13.6\times 10^{3}kg/m^{3} $ Given 1 atmospheric pressure$ =1.01\times 10^{5}N/m^{2} $

Options:

A) $ 3.81\times 10^{5}N/m^{2} $

B) $ 6\times 10^{6}N/m^{2} $

C) $ 5\times 10^{7}N/m^{2} $

D) $ 4.6\times 10^{2}N/m^{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a]Suppose $ P_{gas} $ is the pressure of the gas on the oil. As the points A and B are at the same level in the mercury columns, so $ P_{A}=P_{B} $ or$ P_{gas}+{\rho_{oil}}gh_{oil}=P_{a}+{\rho_{Hg}}g{h_{^{Hg}}} $ or $ P_{gas}+820\times 9.8\times (1+1.50) $ $ =P_{a}+13.6\times 10^{3}\times 9.8\times (1.5+0.75) $ or$ P_{gas}+20.09\times 10^{3}=P_{a}+299.88\times 10^{3} $ $ \therefore ,P_{gas}-Pa=299.88\times 10^{3}-20.09\times 10^{3} $ or $ {{[P_{gas}]}{gauge}}=279.8\times 10^{3}N/m^{2}=2.8\times 10^{5}N/m^{2} $ Absolute pressure of gas $ {{[P{gas}]}{gauge}}={{[P{gas}]}{gauge}}+P{a} $ $ =2.8\times 10^{5}+1.01\times 10^{5}=3.81\times 10^{5}N/m^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें