Fluid Mechanics Viscosity Question 265

Question: A hemispherical bowl just floats without sinking in a liquid of density$ 1.2\times 10^{3}kg/m^{3} $ . If outer diameter and the density of the bowl are 1 m and $ 2\times 10^{4}kg/m^{3} $ respectively then the inner diameter of the bowl will be

Options:

A) 0.94 m

B) 0.97 m

C) 0.98 m

D) 0.99 m

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Weight of the bowl =mg $ =V\rho g=\frac{4}{3}\pi \left[ {{\left( \frac{D}{2} \right)}^{3}}-{{\left( \frac{d}{2} \right)}^{3}} \right]\rho g $ Where $ D=Outerdiameter $ d= Inner diameter, $ \rho =Densityofbowl $ Weight of the liquid diplaced by the bowl $ =V\sigma g=\frac{4}{3}\pi {{\left( \frac{D}{2} \right)}^{3}}\sigma g $ where $ \sigma $ is the density of the liquid For the floation $ \frac{4}{3}\pi {{\left( \frac{D}{2} \right)}^{3}}\sigma g=\frac{4}{3}\pi \left[ \left( {{\frac{D}{2}}^{3}} \right)-{{\left( \frac{d}{2} \right)}^{3}} \right]pg $ $ \Rightarrow ,{{\left( \frac{1}{2} \right)}^{3}}\times 1.2\times 10^{3}=\left[ {{\left( \frac{1}{2} \right)}^{3}}-{{\left( \frac{d}{2} \right)}^{3}} \right]2\times 10^{4} $ By solving we get $ d=0.98m. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें