Fluid Mechanics Viscosity Question 292

Question: A horizontal tube has different cross sections at points A and B. The area of cross section are $ a_{1} $ and$ a_{2} $ , respectively, and pressures at these points are $ p_{1}=\rho gh_{1} $ and$ p_{2}=\rho gh_{2} $ , where p is the density of liquid flowing in the tube and $ h_{1} $ and $ h_{2} $ are heights of liquid columns in vertical tubes connected at A and B. If$ h_{1}-h_{2}=h $ , then the flow rate of the liquid in the horizontal tube is

Options:

A) $ a_{1}a_{2}\sqrt{\frac{2gh}{a_{1}^{2}-a_{2}^{2}}} $

B) $ a_{1}a_{2}\sqrt{\frac{2g}{h\left( a_{1}^{2}-a_{2}^{2} \right)}} $

C) $ a_{1}a_{2}\sqrt{\frac{(a_{1}^{2}+a_{2}^{2})h}{2g\left( a_{1}^{2}-a_{2}^{2} \right)}} $

D) $ \frac{2a_{1}a_{2}gh}{\sqrt{a_{1}^{2}-a_{2}^{2}}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let $ a_{1} $ and $ a_{2} $ be cross sectional areas and$ v_{1} $ and $ v_{2} $ the velocities of liquid flow at A and B. If $ p_{1} $ and $ p_{2} $ are pressures of liquid recorded by manometer, then $ P_{1}+\frac{1}{2}pv_{1}^{2}=p_{2}+\frac{1}{2}\rho v_{2}^{2} $ $ \Rightarrow p_{1}-p_{2}=\frac{1}{2}\rho v_{1}^{2}\left( \frac{v_{2}^{2}}{v_{1}^{2}}-1 \right) $ By equation of continuity, $ a_{1}v_{1}=a_{2}v_{2} $ Also, $ p_{1}-p_{2}=h\rho g $ Substituting these values, we have $ v_{1}=\sqrt{\frac{2gh}{\frac{a_{1}^{2}}{a_{2}^{2}}-1}} $ Rate of flow of liquid is$ a_{1}v_{1}=a_{1}a_{2}\sqrt{\frac{2gh}{a_{1}^{2}-a_{2}^{2}}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें