Fluid Mechanics Viscosity Question 322

Question: A large number of droplets, each of radius, r coalesce to form a bigger drop of radius, R. An engineer designs a machine so that the energy released in this process is converted into the kinetic energy of the drop. Velocity of the drop is ($ T= $ surface tension, $ \rho = $ density)

Options:

A) $ {{\left[ \frac{T}{\rho }\left( \frac{1}{r}-\frac{1}{R} \right) \right]}^{1/2}} $

B) $ {{\left[ \frac{6T}{\rho }\left( \frac{1}{r}-\frac{1}{R} \right) \right]}^{1/2}} $

C) $ {{\left[ \frac{3T}{\rho }\left( \frac{1}{r}-\frac{1}{R} \right) \right]}^{1/2}} $

D) $ {{\left[ \frac{2T}{\rho }\left( \frac{1}{r}-\frac{1}{R} \right) \right]}^{1/2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] When small droplets coalesce to form a bigger drop, energy released in this process is given by, $ 4\pi R^{3}T\left[ \frac{1}{r}-\frac{1}{R} \right] $ According to question $ \frac{1}{2}mv^{2}=4\pi R^{3}T\left[ \frac{1}{r}-\frac{1}{R} \right] $ $ \Rightarrow ,,,\frac{1}{2}\left[ \frac{4}{2}\pi R^{3}\rho\right]v^{2}=4\pi R^{3}T\left[ \frac{1}{r}-\frac{1}{R} \right] $ $ \Rightarrow V^{2}=\frac{6T}{\rho }\left[ \frac{1}{r}-\frac{1}{R} \right]\Rightarrow V={{\left[ \frac{6T}{\rho }\left( \frac{1}{r}-\frac{1}{R} \right) \right]}^{\frac{1}{2}}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें