Fluid Mechanics Viscosity Question 82

Question: Two communicating vessels contain mercury. The diameter of one vessel is n times larger than the diameter of the other. A column of water of height h is poured into the left vessel. The mercury level will rise in the right-hand vessel (s = relative density of mercury and $ \rho $ = density of water) by

Options:

A) $ \frac{n^{2}h}{{{(n+1)}^{2}}s} $

B) $ \frac{h}{(n^{2}+1),s} $

C) $ \frac{h}{{{(n+1)}^{2}}s} $

D) $ \frac{h}{n^{2}s} $

Show Answer

Answer:

Correct Answer: B

Solution:

If the level in narrow tube goes down by h1 then in wider tube goes up to h2, Now, $ \pi r^{2}h_{1}=\pi {{(nr)}^{2}}h_{2} $ Þ $ h_{1}=n^{2}h_{2} $ Now, pressure at point A = pressure at point B $ h\rho g=(h_{1}+h_{2})\rho ‘g $ Þ h = $ (n^{2}h_{2}+h_{2})sg $ $ \left( r\ s=\frac{\rho ‘}{\rho } \right) $ Þ $ h_{2}=\frac{h}{(n^{2}+1)s} $