Gravitation Question 315

Three particles P, Q and R are placed as per . Masses of P, Q and R are $ \sqrt{3}m,,,\sqrt{3}m $ and m respectively. The gravitational force on a fourth particle S of mass m is equal to

Options:

A) $ [\frac{\sqrt{3}GM^{2}}{2d^{2}}] $ in ST direction only

B) $ [\frac{\sqrt{3}GM^{2}}{2d^{2}}] $ in SQ direction and $ [\frac{\sqrt{3}GM^{2}}{2d^{2}}] $ in SU direction

C) $ [\frac{\sqrt{3}GM^{2}}{2d^{2}}] $ in SQ direction only

D)$ [\frac{\sqrt{3}GM^{2}}{2d^{2}}] $ in SQ direction and $ [\frac{\sqrt{3}GM^{2}}{2d^{2}}] $ in ST direction

Show Answer

Answer:

Correct Answer: C

Solution:

  • In horizontal direction $ [Net,force=\frac{G\sqrt{3}mm}{12d^{2}}\cos {{30}^{o}}-\frac{Gm^{2}}{4d}\cos {{60}^{o}}] $

    $ [=\frac{Gm^{2}}{8d^{2}}-\frac{Gm^{2}}{8d^{2}}=0] $

In vertical direction, Net force $ [=\frac{G\sqrt{3}m^{2}}{12d^{2}}\cos {{60}^{o}}+\frac{G\sqrt{3}m^{2}}{3d^{2}}+\frac{Gm^{2}}{4d^{2}}\cos {{30}^{o}}] $

$ \[=\frac{\sqrt{3}Gm^{2}}{24d^{2}}+\frac{\sqrt{3}Gm^{2}}{3d^{2}}+\frac{\sqrt{3}Gm^{2}}{8d}\] $  

$ \[=\frac{\sqrt{3}Gm^{2}}{d^{2}}\left[ \frac{1+8+3}{24} \right]=\frac{\sqrt{3}Gm^{2}}{2d^{2}}\] $ along SQ-


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें