Gravitation Question 324

Question: Four similar particles of mass m are orbiting in a circle of radius r in the same angular direction because of their mutual gravitational attractive force. Then, velocity of a particle is given by

Options:

A) $ [{{\left[ \frac{Gm}{r}\left( \frac{1+2\sqrt{2}}{4} \right) \right]}^{\frac{1}{2}}}] $

B) $ [\sqrt{\frac{Gm}{r}}] $

C) $ [\sqrt{\frac{Gm}{r}}\left( 1+2\sqrt{2} \right)] $

D) $ [a{{\left[ \frac{1}{2}\frac{Gm}{r}\left( \frac{1+2\sqrt{2}}{2} \right) \right]}^{\frac{1}{2}}}] $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Centripetal force = net gravitational force

    $ [\Rightarrow \frac{mv_{0}^{2}}{r}=2F\cos {{45}^{o}}+F_{1}=\frac{2Gm^{2}}{{{\left( \sqrt{2} \right)}^{2}}}\frac{1}{\sqrt{2}}+\frac{Gm}{4r^{2}}] $

    $ [\frac{mv_{0}^{2}}{r}=\frac{Gm}{4r^{2}}\left[ 2\sqrt{2}+1 \right]] $ $ [\Rightarrow v_{0}={{\left[ \frac{Gm\left( 2\sqrt{2}+1 \right)}{4r} \right]}^{\frac{1}{2}}}] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें