Gravitation Question 341

Question: Gravitational field at the centre of a semicircle formed by a thin wire AB of mass m and length $ [\ell ] $ is

Options:

A) $ [\frac{Gm}{{{\ell }^{2}}}along+x-axis] $

B) $ [\frac{Gm}{\pi {{\ell }^{2}}}along+y-axis] $

C) $ [\frac{2\pi Gm}{{{\ell }^{2}}}along+x-axis] $

D) $ [\frac{2\pi Gm}{{{\ell }^{2}}}along+y-axis] $

Show Answer

Answer:

Correct Answer: D

Solution:

  • Let mass per unit light of wire, $ [\lambda =\frac{M}{\ell }] $

    and $ [\pi r=\ell ,r=\frac{\ell }{\pi }] $ .

    mass of element,

    $ [dm=\lambda rd\theta $ then $ dE =\frac{Gdm}{{{r}^{2}}}] $

    $ [\int\limits _{0}^{\pi }{dE\int\limits _{0}^{\pi }{\frac{G\lambda rd\theta }{r^{2}}\left( \hat{i}\cos \theta +\hat{j}\sin \theta\right)}}] $

    $ [E=\frac{G\lambda }{r}\left[ \int\limits _{0}^{\pi }{\hat{i}\cos \theta +\int\limits _{0}^{\pi }{\hat{j}\sin \theta }} \right]] $

    $ [=\frac{2G\lambda }{r}\hat{j}=\frac{2GM}{\ell r}\hat{j}=\frac{2Gm\pi }{{{\ell }^{2}}}\hat{j}] $ (along y-axis



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें