Gravitation Question 353

Question: An asteroid of mass m is approaching earth initially at a distance of$ [10{R_{e}}] $ , with speed$ [v_{i}] $ . It hits the earth with a speed $ [v_{f}({R_{e}},,and,,M_{e}] $ , are radius and mass of earth), then

Options:

A)$ [v_{f}^{2}=v_{i}^{2}+\frac{2GM}{M_{e}R}\left( 1-\frac{1}{10} \right)] $

B) $ [v_{f}^{2}=v_{i}^{2}+\frac{2GM_{e}}{{R_{e}}}\left( 1+\frac{1}{10} \right)] $

C) $ [v_{f}^{2}=v_{i}^{2}+\frac{2GM_{e}}{{R_{e}}}\left( 1-\frac{1}{10} \right)] $

D) $ [v_{f}^{2}=v_{i}^{2}+\frac{2GM}{{R_{e}}}\left( 1-\frac{1}{10} \right)] $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ [-\frac{GM_{e}m}{10{R_{e}}}+\frac{1}{2}mv_{i}^{2}=-\frac{GM_{e}m}{{R_{e}}}+\frac{1}{2}mv_{f}^{2}] $

    $ [\therefore v_{f}^{2}=v_{i}^{2}+\frac{2GM_{e}}{{R_{e}}}\left( 1-\frac{1}{10} \right)] $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें