Gravitation Question 363

The gravitational potential of two homogeneous spherical shells A and B of same surface density at their respective centres are in the ratio 3 : 4. If the two shells coalesce into single one such that surface mass density remains same, then the ratio of potential at an internal point of the new shell to shell A is equal to

Options:

3:2

B)4:3

5:3

D)5:6

Show Answer

Answer:

Correct Answer: C

Solution:

$ [M _{A}=\sigma 4\pi {R^{2}} _{A},M _{B}=\sigma 4\pi R] $ , where σ is surface density

$ \[{V _{A}}=\frac{-GM _{A}}{R _{A}},\,V _{B}=\frac{-GM _{B}}{R _{B}}\] $  

$ [\frac{V _{A}}{V _{B}}=\frac{M _{A}}{M _{B}},,\frac{R _{B}}{R _{A}}=\frac{4\pi R^{2} _{A}}{4\pi R^{2} _{B}},\frac{R _{B}}{{R _{A}}}=\frac{{R _{A}}}{{R _{B}}}] $

Given $ \[\frac{{V _{A}}}{{V _{B}}}=\,\frac{R _{A}}{R _{B}}=\frac{3}{4}\] $ 

then $ \[{R _{B}}=\frac{4}{3}{R _{A}}\] $  

for new shell of mass M and radius R $ \[M={M _{A}}+{M _{B}}=\sigma 4\pi R^{2} _{A}+\sigma 4\pi R^{2} _{B}\] $  

$ [\sigma 4\pi R^{2}=\sigma 4\pi \left( R^{2} _{A}+R^{2} _{B} \right)] $

then $ \[\frac{V}{{V _{A}}}=\frac{M}{M},\,\frac{{R _{A}}}{{R _{B}}}=\frac{\sigma 4\pi \left( R^{2} _{A}+R^{2} _{B} \right)}{{{\left( R^{2} _{A}+R^{2} _{B} \right)}^{1/2}}},=\frac{{R _{A}}}{\sigma 4\pi R^{2} _{A}}\] $ 

$ \[\frac{\sqrt{R^{2} _{A}+R^{2} _{B}}}{R _{A}}=\frac{5}{3}\] $ 


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें